skip to main content


Search for: All records

Creators/Authors contains: "Johnson, Ian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 13, 2024
  2. null (Ed.)
  3. null (Ed.)
    V 2 O 5 is of interest as a Mg intercalation electrode material for Mg batteries, both in its thermodynamically stable layered polymorph (α-V 2 O 5 ) and in its metastable tunnel structure (ζ-V 2 O 5 ). However, such oxide cathodes typically display poor Mg insertion/removal kinetics, with large voltage hysteresis. Herein, we report the synthesis and evaluation of nanosized ( ca . 100 nm) ζ-V 2 O 5 in Mg-ion cells, which displays significantly enhanced electrochemical kinetics compared to microsized ζ-V 2 O 5 . This effect results in a significant boost in stable discharge capacity (130 mA h g −1 ) compared to bulk ζ-V 2 O 5 (70 mA h g −1 ), with reduced voltage hysteresis (1.0 V compared to 1.4 V). This study reveals significant advancements in the use of ζ-V 2 O 5 for Mg-based energy storage and yields a better understanding of the kinetic limiting factors for reversible magnesiation reactions into such phases. 
    more » « less
  4. Doglioni, C. ; Kim, D. ; Stewart, G.A. ; Silvestris, L. ; Jackson, P. ; Kamleh, W. (Ed.)
    For many scientific projects, data management is an increasingly complicated challenge. The number of data-intensive instruments generating unprecedented volumes of data is growing and their accompanying workflows are becoming more complex. Their storage and computing resources are heterogeneous and are distributed at numerous geographical locations belonging to different administrative domains and organisations. These locations do not necessarily coincide with the places where data is produced nor where data is stored, analysed by researchers, or archived for safe long-term storage. To fulfil these needs, the data management system Rucio has been developed to allow the high-energy physics experiment ATLAS at LHC to manage its large volumes of data in an efficient and scalable way. But ATLAS is not alone, and several diverse scientific projects have started evaluating, adopting, and adapting the Rucio system for their own needs. As the Rucio community has grown, many improvements have been introduced, customisations have been added, and many bugs have been fixed. Additionally, new dataflows have been investigated and operational experiences have been documented. In this article we collect and compare the common successes, pitfalls, and oddities that arose in the evaluation efforts of multiple diverse experiments, and compare them with the ATLAS experience. This includes the high-energy physics experiments Belle II and CMS, the neutrino experiment DUNE, the scattering radar experiment EISCAT3D, the gravitational wave observatories LIGO and VIRGO, the SKA radio telescope, and the dark matter search experiment XENON. 
    more » « less
  5. Abstract

    Magnesium (Mg)‐based materials have shown great potentials for bioresorbable implant applications. Previous studies showed that Mg with 10 and 20 vol % β‐tricalcium phosphate (β‐TCP) composites produced by spark plasma sintering, improved mechanical properties when compared with pure Mg. The objectives of this study were to evaluate the degradation behaviors of Mg/10% β‐TCP and Mg/20% β‐TCP composites in revised stimulated body fluid (rSBF), and to determine their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs) using the direct culture method. During the 11 days of immersion in rSBF, Mg/β‐TCP composites showed different degradation behaviors at different immersion periods, that is, the initial stage (0–1 hr), the mid‐term stage (1 hr to 2 days), and the long‐term stage (2−11 days). The counter effects of mass loss due to microgalvanic corrosion and mass gain due to deposition of Ca‐P containing layers resulted in slower Mg2+ion release for Mg/20% β‐TCP than Mg/10% β‐TCP in the mid‐term, but eventually 16% mass loss for Mg/20% β‐TCP and 10% mass loss for Mg/10% β‐TCP after 11 days of immersion. The in vitro studies with BMSCs showed the highest cell adhesion density (i.e., 68% of seeding density) on the plate surrounding the Mg/10% β‐TCP sample, that is, under the indirect contact condition of direct culture. The β‐TCP showed a positive effect on direct adhesion of BMSCs on the surface of Mg/β‐TCP composites. This study elucidated the degradation behaviors and the cytocompatibility of Mg/β‐TCP composites in vitro; and, further studies on Mg/ceramic composites are needed to determine their potential for clinical applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2238–2253, 2019.

     
    more » « less